
• We adapt IRM to unlearning by replacing the ERM loss with an unlearning objective ℓ𝑢, while 

keeping the invariance regularization to resist downstream fine-tuning 

Here, 𝒟𝑖 encodes the fine-tuning environment (e.g., GSM8K or AGNews), unrelated to unlearning.

• The invariance regularization encourages 𝜽 to be robust to fine-tuning across all 𝒟𝑖.
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• LLM unlearning aims to remove undesirable

learned information from a trained model, while 

preserving overall utility[1].

Here, 𝒟f is the forget set to be unlearned, 

and 𝒟r is the retain set to preserve utility. 

Figure 1. Motivating example: Fine-tuning breaks existing

unlearning methods (NPO and RMU) on the WMDP using Zephyr-

7B-beta [3]. Forgetting is measured by 1 - WMDP accuracy. Color

indicates the fine-tuning epochs, from no tuning to the point where

performance matches that of full fine-tuning (‘Original’).
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➢ What Is LLM Unlearning?

➢Unlearning Vulnerability in the 

Face of Downstream Fine-tuning

➢ IRM Principle: Learning Invariant Predictor Across Environments

• Knowledge removed through unlearning can be 

rapidly recovered via post-unlearning fine-

tuning, even when the new data is unrelated[2].

• Invariant Risk Minimization (IRM) [4] aims to learn a model that remains simultaneously optimal 

across all training environments. A tractable formulation is known as IRMv1 [4], formulated as:

Here, 𝒘 is invariant predictor,  𝝓 is shared representation network, the composition 𝜽 = 𝒘 ∘ 𝝓 yields the full

model, 𝑁 is the number of training environments, and 𝒟𝑖 is the dataset for the i-th environment. By IRMv1,

𝒘 = 1 can be regarded as a virtual (scalar) predictor such that 𝜽 = 𝝓 . 

• Insight: This IRM mechanism, originally designed for improving domain generalization, inspires us 

to promote the invariance of unlearning against additional fine-tuning on the unlearned model. 

➢ Experiment Results Highlights

Figure 3. Resilience of unlearning to downstream fine-tuning across different fine-tuning epochs. Each sub-

plot represents a downstream fine-tuning dataset. The x-axis denotes the fine-tuning epoch, with the maximum

number set to ensure convergence and satisfactory fine-tuning performance for each downstream task.
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➢ Invariant LLM Unlearning (ILU)

Figure 4. Generalization of ILU to unseen fine-tuning

tasks during evaluation. A heatmap of forget quality

on WMDP is presented for RMU and its ILU variants,

demonstrating unlearning robustness under various

unlearning training and downstream fine-tuning

settings. Each row corresponds to an unlearning

approach, and each column represents a post-

unlearning fine-tuning setting.

➢Analysis via Task Vector ➢Single Fine-tune Set Suffices for ILU

Figure 2. Illustration of 

ILU’s improved 

unlearning robustness 

compared to NPO 

through the relationship 

between unlearning task

vector and fine-tuning 

task vector on WMDP 

with  Zephyr-7b-beta.

Figure 3.  A single fine-

tuning dataset suffices for 

preserving unlearning

efficacy against fine-

tuning. Here, ILU(Multi)

adopts GSM8K, AGNews, 

and WinoGrande as 

multiple invariance 

sources in regularization

• Generalization of ILU• ILU on MUSE Dataset 

Table 1. Comparison of ILU and NPO on MUSE-News

and MUSE-Books benchmarks, evaluating performance

both before and after fine-tuning.

• Effectiveness of ILU on WMDP Dataset 
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Unlearning: A surgery to AI Application of unlearning

𝜽u = argmin𝜽 ℓf 𝜽; 𝒟f
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